3,260 research outputs found

    Learning a Hierarchical Latent-Variable Model of 3D Shapes

    Full text link
    We propose the Variational Shape Learner (VSL), a generative model that learns the underlying structure of voxelized 3D shapes in an unsupervised fashion. Through the use of skip-connections, our model can successfully learn and infer a latent, hierarchical representation of objects. Furthermore, realistic 3D objects can be easily generated by sampling the VSL's latent probabilistic manifold. We show that our generative model can be trained end-to-end from 2D images to perform single image 3D model retrieval. Experiments show, both quantitatively and qualitatively, the improved generalization of our proposed model over a range of tasks, performing better or comparable to various state-of-the-art alternatives.Comment: Accepted as oral presentation at International Conference on 3D Vision (3DV), 201

    Lifelong Neural Predictive Coding: Learning Cumulatively Online without Forgetting

    Full text link
    In lifelong learning systems, especially those based on artificial neural networks, one of the biggest obstacles is the severe inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this article, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the immensely popular back-propagation of errors. Grounded in the neurocognitive theory of predictive processing, our model adapts its synapses in a biologically-plausible fashion, while another, complementary neural system rapidly learns to direct and control this cortex-like structure by mimicking the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting as compared to standard neural models and outperforms a wide swath of previously proposed methods even though it is trained across task datasets in a stream-like fashion. The promising performance of our complementary system on benchmarks, e.g., SplitMNIST, Split Fashion MNIST, and Split NotMNIST, offers evidence that by incorporating mechanisms prominent in real neuronal systems, such as competition, sparse activation patterns, and iterative input processing, a new possibility for tackling the grand challenge of lifelong machine learning opens up.Comment: Key updates including results on standard benchmarks, e.g., split mnist/fmnist/not-mnist. Task selection/basal ganglia model has been integrate
    • …
    corecore